Close Menu
  • Home
  • Crypto News
  • Tech News
  • Gadgets
  • NFT’s
  • Luxury Goods
  • Gold News
  • Cat Videos
What's Hot

Bull and Cat funny videos #pets #funny #animallife

May 18, 2025

Best Mac Apps to Boost Productivity and Personalization

May 18, 2025

Peacock Premium drops to only $25 for one year

May 18, 2025
Facebook X (Twitter) Instagram
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms of Use
  • DMCA
Facebook X (Twitter) Instagram
KittyBNK
  • Home
  • Crypto News
  • Tech News
  • Gadgets
  • NFT’s
  • Luxury Goods
  • Gold News
  • Cat Videos
KittyBNK
Home » Building an AI chat app using large language models and RAG
Gadgets

Building an AI chat app using large language models and RAG

October 24, 2023No Comments5 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Building an AI chat app using large language models and RAG
Share
Facebook Twitter LinkedIn Pinterest Email

Anyone interested in learning more about building AI chat applications. Will be interested to know that IBM has created a fantastically quick and to the point introduction to using Retrieval Augmented Generation (RAG) and large language models.  By building your own chat applications and customizing them with your own personal data makes them far more valuable. Whether you are in than individual wishing to keep your documentations of third-party servers or businesses with sensitive data. Training your own AI models on specific information and knowledge is a great way to integrate AI into your workflows.

This guide will explore the process of creating such an app, focusing on the use of the RAG, the LangChain framework, and Streamlit components. It will also divide a little insight on the use of LangChain’s interface for a credentials dictionary with an API for IBM Cloud, and the use of the large language model ‘Llama 2 70b chat‘ for the project.

The Retrieval-Augmented Generation (RAG) technique is a powerful tool that combines the strengths of retrieval-based and generative models for natural language understanding and generation tasks. In this approach, an initial query or context is used to fetch relevant information from a large database or corpus using a retriever. The retrieved information is then supplied to a generator model, often a sequence-to-sequence model like a Transformer, to produce a more informed and contextually relevant output. In the context of building a chat app using large language models and personal data, this technique can be highly beneficial. It allows the app to provide responses that are not only coherent and contextually appropriate but also highly personalized based on the user’s data.

Building an AI chat app using LLMs

LangChain is a framework designed for developing applications powered by language models. It provides modular abstractions for the components necessary to work with language models and has collections of implementations for these abstractions. The components are designed to be easy to use, regardless of whether you are using the rest of the LangChain framework or not. Nicholas Renotte takes you through the process of Building a chat app with LangChain and Streamlit, covering everything you need to know in just three minutes.

Other articles we have written that you may find of interest on the subject of Retrieval-Augmented Generation (RAG) projects and techniques.

LangChain also provides use-case specific chains, which can be thought of as assembling these components in particular ways to best accomplish a specific use case. These chains are designed to be customizable and provide a higher level interface through which people can easily get started with a specific use case.

Easy GUI design using Streamlit

Building a chat app with LangChain and Streamlit can offer a seamless and efficient development experience. Streamlit components can be used for chat input and message display, creating a user-friendly interface. One can create a state variable for storing user prompts, facilitating the process of tracking and responding to user interactions. LangChain’s interface to WhatOnNext can be used to guide the chat app’s responses, making it more dynamic and engaging.

Llama 2

For the project, the large language model ‘llama 2 70b chat‘ can be utilized. This model can generate coherent and contextually appropriate responses, enhancing the user experience. The responses generated by the language model can be displayed using the Streamlit chat message component, creating a smooth and interactive interface for users.

“Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 70B fine-tuned model, optimized for dialogue use cases and converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.”

Adding Personal data

Incorporating personal data into the chat app can be accomplished in a number of different ways. For instance loading PDF data into the LangChain Vector store index. This allows the app to retrieve and utilize personal data from PDF files, adding a layer of personalization to the chat interactions. The LangChain retriever QA chain can be used for chat interactions with the PDF data, enabling the app to provide responses based on the user’s personal data.

To facilitate the connection to external data sources and services, a credentials dictionary can be used with an API for IBM Cloud. This allows the chat app to access and utilize cloud-based resources, enhancing its capabilities and performance.

Building a chat app using large language models and personal data involves a combination of advanced techniques and tools. The use of the Retrieval Augmented Generation technique, the LangChain framework, and Streamlit components, along with the integration of personal data, can result in a dynamic, interactive, and personalized chat app. The process, while complex, can offer a rewarding outcome: a chat app that not only understands and responds to user prompts but also provides a personalized and engaging user experience.

Filed Under: Guides, Top News





Latest Geeky Gadgets Deals

Disclosure: Some of our articles include affiliate links. If you buy something through one of these links, Geeky Gadgets may earn an affiliate commission. Learn about our Disclosure Policy.


Credit: Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Best Mac Apps to Boost Productivity and Personalization

May 18, 2025

Build Apps in 15 Minutes: A Beginner’s Guide to Vibe Coding in 2025

May 18, 2025

Best Budget-Friendly Smart Gadgets for Home Automation

May 18, 2025

CarPlay Ultra Explained: Real-Time Data, Customization, and More

May 18, 2025
Add A Comment
Leave A Reply Cancel Reply

What's New Here!

Best affordable online boutiques – Affordable fashion brands

March 20, 2023

Dogecoin Price Sees 6% Rise – Is Now a Good Time to Buy DOGE?

April 8, 2024

How New Crypto Accounting Rules Fuel Bitcoin’s Institutional Adoption Ahead Of BTC Halving Event?

September 10, 2023

Fuel Cell Yacht Market research report covers future, past and current trends

November 3, 2023

Magic Eden Enables Optional Royalties for EVM Chains

September 23, 2024
Facebook X (Twitter) Instagram Telegram
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms of Use
  • DMCA
© 2025 kittybnk.com - All Rights Reserved!

Type above and press Enter to search. Press Esc to cancel.