Close Menu
  • Home
  • Crypto News
  • Tech News
  • Gadgets
  • NFT’s
  • Luxury Goods
  • Gold News
  • Cat Videos
What's Hot

Islamic cat killed the sheep 😮😮 #aicat #funny #cat #cute #catvideos

June 7, 2025

Can Rising Demand from BlackRock Fuel Bullish Momentum?

June 7, 2025

Pocket Boss turns corporate data manipulation into a puzzle game

June 6, 2025
Facebook X (Twitter) Instagram
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms of Use
  • DMCA
Facebook X (Twitter) Instagram
KittyBNK
  • Home
  • Crypto News
  • Tech News
  • Gadgets
  • NFT’s
  • Luxury Goods
  • Gold News
  • Cat Videos
KittyBNK
Home » Learn how to build RAG chatbots – complete workflow
Gadgets

Learn how to build RAG chatbots – complete workflow

September 18, 2023No Comments4 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Learn how to build RAG chatbots – complete workflow
Share
Facebook Twitter LinkedIn Pinterest Email

if you’re looking to build a wide range of AI chatbot you might be interested in a fantastic tutorial created by James Briggs on how to use Retrieval Augmented Generation (RAG) to make chatbot’s more efficient and predominantly faster. This article aims to provide an overview of RAG, focusing on its implementation using Nemo Guardrails, and how it can be used to create chatbots quickly and efficiently.

Retrieval Augmented Generation is a method that combines the best of both worlds from retrieval-based and generative models. It leverages the power of language models (LMs) and a vector database to create a pipeline that can generate responses in a chatbot. This method has been gaining traction due to its ability to provide more nuanced and contextually accurate responses compared to traditional methods.

Nemo Guardrails

Designed for conversational systems that utilize Large Language Models (LLMs), NeMo Guardrails is an open-source toolkit aimed at the effortless incorporation of programmable guardrails. Known simply as ‘rails,’ these specialized techniques manage the output from a language model in various ways. They can follow predetermined dialogue paths, avoid discussing political topics, respond to user-specific requests in particular ways, employ distinct language styles, and even extract structured data.

Currently in its alpha stage, the toolkit encourages active community participation for the advancement of secure, reliable, and universally accessible LLMs. While the examples in the documentation aim to guide beginners through the nuances of NeMo Guardrails, they are not intended for deployment in production settings.

How to construct RAG chatbots

For the full documentation and code kindly provided by James Briggs jump over to his official website.

Other articles you may find of interest on the subject of  RAG :

Traditionally, there have been two main approaches to implementing RAG in chatbots. The straightforward process where the chatbot retrieves relevant information from the database and generates a response. On the other hand, the other approach involves a more complex process where the chatbot not only retrieves information but also learns from past interactions to improve future responses.

However, both these approaches have their limitations. While the first is simple, this may not always provide the most accurate or contextually relevant responses. The second approach, while more sophisticated, can be time-consuming and computationally intensive.

Faster and more efficient method

This is where the Guardrails approach comes into play. The Guardrails approach is a faster and more efficient method of implementing RAG. It allows for quicker tool triggering without the need for an initial LM call, thereby speeding up the response time of the chatbot. This approach is particularly beneficial in scenarios where the chatbot needs to provide immediate responses, such as customer service or emergency response situations.

Implementing RAG pipelines with Guardrails involves a series of steps. First, the chatbot retrieves relevant information from the vector database. Next, the embedding model is used to convert this information into a format that the LM can understand. The LM then generates a response based on this information. The Guardrails approach ensures that this process is carried out quickly and efficiently, without compromising on the quality or relevance of the response.

RAG vs non-RAG

A comparison of RAG and non-RAG responses reveals the superiority of the former. RAG responses are generally more nuanced and contextually accurate. They are capable of understanding the user’s intent and providing a response that is not only relevant but also personalized. Non-RAG responses, on the other hand, tend to be more generic and may not always accurately address the user’s query.

The use of Retrieval Augmented Generation, particularly with the Guardrails approach, can significantly enhance the efficiency and effectiveness of chatbots. By leveraging the power of language models and vector databases, RAG allows for the creation of chatbots that can provide more nuanced and contextually accurate responses. Whether you’re a seasoned AI developer or a novice in the field, understanding and implementing RAG can be a game-changer in your chatbot development journey.

Filed Under: Guides, Top News





Latest Geeky Gadgets Deals

Disclosure: Some of our articles include affiliate links. If you buy something through one of these links, Geeky Gadgets may earn an affiliate commission. Learn about our Disclosure Policy.


Credit: Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Exploring the Fusion of Artificial Intelligence and Artistic Expression

June 6, 2025

Samsung Galaxy Z Fold 7 Ultra Leaks: What to Expect

June 6, 2025

How Self-Improving AI Like DGM is Transforming Software Development

June 6, 2025

iPhone 17 Leaks and Rumors: Full Details

June 6, 2025
Add A Comment
Leave A Reply Cancel Reply

What's New Here!

Redefining the Word ‘Luxury’ in West Chester

October 20, 2023

Unveiling Extravagance: The Four Seasons Luxury Yacht Launches in 2025

January 23, 2024

Teenagers arrested after theft of luxury cars on Central Coast and high-speed chase to Sydney

February 12, 2024

Destructive kittens #cat #catvideos #funny #yourcat #pets

November 18, 2024

Updated 2024 Genesis G70 is $18K more expensive

November 24, 2023
Facebook X (Twitter) Instagram Telegram
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms of Use
  • DMCA
© 2025 kittybnk.com - All Rights Reserved!

Type above and press Enter to search. Press Esc to cancel.